

Lineberger Cancer Center, U. N. C. Chapel Hill

DWD Normalization of Micro-Array Batch and Cross-Platform Effects

J. S. Marron

Dept. of Statistics and Operations Research

June 28, 2004

Main Lessons

- Normalize data to "make comparable"
 - For source and batch effects
 - Across platforms
 - Based on "DWD" (Distance Weighted Discrimination)
- Allows combining data sets
 - Bigger data sets → More statistical power
 - Set your data among larger caBIG data base
- Visualization is crucial
 - To see "why it works"
 - As diagnostics to understand and handle failures

Website: Details & More Views

DWD caBIG Web Page:

http://genome.med.unc.edu:8080/caBIG/DWDindex.htm

- Many more "steps"
- Also Clustered Tree View Heat Map Views

Key Philosophical Point

- Competing Paradigms:
 - Visually: what do we look at?
 - Conceptually: how do we think?

Gene by Gene vs.

Multivariate "point cloud"

- Will illustrate power of multivariate concept
 - While showing to combine data across platforms

Illustration of Multivariate View: Raw Data

UNC Lineberger

Illustration of Multivariate View: Highlight One

UNC Lineberger

Illustration of Multivariate View: Gene 1 Express'n

UNC Lineberger

7

Illustration of Multivariate View: Gene 2 Express'n

UNC Lineberger

Illustration of Multivariate View: Gene 3 Express'n

UNC Lineberger

Illust'n of Multivar. View: 1-d Projection, X-axis

UNC Lineberger

Projections on Gene 1, i.e. X axis

Illust'n of Multivar. View: X-Projection, 1-d view

Illust'n of Multivar. View: 1-d Projection, Y-axis

UNC Lineberger

Projections on Gene 2, i.e. Y axis

Illust'n of Multivar. View: Y-Projection, 1-d view

Illust'n of Multivar. View: 1-d Projection, Z-axis

UNC Lineberger

Projections on Gene 3, i.e. Z axis

Illust'n of Multivar. View: Z-Projection, 1-d view

Illust'n of Multivar. View: 2-d Proj'n, XY-plane

UNC Lineberger

Projections on Genes 1 & 2, i.e. X & Y axes

Illust'n of Multivar. View: XY-Proj'n, 2-d view

Illust'n of Multivar. View: 2-d Proj'n, XZ-plane

UNC Lineberger

Projections on Genes 1 & 3, i.e. X & Z axes

Illust'n of Multivar. View: XZ-Proj'n, 2-d view

Illust'n of Multivar. View: 2-d Proj'n, YZ-plane

UNC Lineberger

Projections on Genes 2 & 3, i.e. Y & Z axes

Illust'n of Multivar. View: YZ-Proj'n, 2-d view

Illust'n of Multivar. View: all 3 planes

UNC Lineberger

All Three 2d Projections

Illust'n of Multivar. View: Diagonal 1-d proj'ns

Illust'n of Multivar. View: Add off-diagonals

Illust'n of Multivar. View: Typical View

Improved View

- Idea: "rotations" of coordinate systems
 - More useful views
- Generally consider "useful directions"
- E.g. 1: Principal Component directions
 - Directions that "maximize variation"
 - Often insightful
 - Also called "eigengenes" or "metagenes"
- E.g. 2: DWD directions
 - Directions that "maximize separation"
 - DWD = "Distance Weighted Discrimination"
 - Improved version of SVM

Illust'n of PCA View: Recall Raw Data

UNC Lineberger

27

Illust'n of PCA View: Recall Gene by Gene Views

UNC Lineberger

All Three 2d Projections

Illust'n of PCA View: All 3 PC Projections

Illust'n of PCA View: Typical View

Comparison of Views

- Highlight 3 clusters
- Gene by Gene View
 - Clusters appear in all 3 scatterplots
 - But never very separated
- PCA View
 - 1st shows three distinct clusters
 - Better separated than in gene view
 - Clustering concentrated in 1st scatterplot
- Effect is small, since only 3-d

Illust'n of PCA View: Gene by Gene View

Illust'n of PCA View: PCA View

Another Comparison of Views

- Much higher dimension, # genes = 4000
- Gene by Gene View
 - Clusters very nearly the same
 - Very slight difference in means
- PCA View
 - Huge difference in 1st PC Direction
 - Magnification of clustering
 - Lesson: Alternate views can show much more (especially in high dimensions, i.e. for many genes)
 - Shows PC view is very useful

Another Comparison: Gene by Gene View

Another Comparison: PCA View

Batch and Source Adjustment

- For Stanford Breast Cancer Data
- Analysis in Benito, et al (2004) Bioinformatics https://genome.unc.edu/pubsup/dwd/
- Adjust for Source Effects
 - Different sources of mRNA
- Adjust for Batch Effects
 - Arrays fabricated at different times
 - Batches were shared between labs

Source Batch Adj: Raw Breast Cancer data

Source Batch Adj: Source Colors

Source Batch Adj: Batch Colors

Source Batch Adj: Biological Class Colors

Source Batch Adj: Biological Class Col. & Symbols

Source Batch Adj: S. & B Adj'd, Class Colors

Source Batch Adj: More Views

Internet Available:

http://genome.med.unc.edu:8080/caBIG/DWDindex.htm

Follow Link:

DWD Bias Adjustment of Batch and Source Effects

Interesting Benchmark Data Set

- NCI 60 Cell Lines
 - Interesting benchmark, since same cells
 - Data Web available: http://discover.nci.nih.gov/datasetsNature2000.jsp
 - Both cDNA and Affymetrix Platforms

- Different from Breast Cancer Data
 - No common RNA

Interest in "mixed samples"????

NCI 60: Raw Data, Platform Colored

NCI 60: Raw Data

NCI 60: Raw Data, Before DWD Adjustment

NCI 60: Before & After DWD adjustment

NCI 60: Before & After, new scales

NCI 60: After DWD

NCI 60: DWD adjusted data

NCI 60: Before Column Mean Adjustment

NCI 60: Before & After Column Mean Adjustment

NCI 60: Before & After Col. Mean Adj., Rescaled

NCI 60: After DWD & Column Mean Adj.

NCI 60: DWD & Column Mean Adjusted

NCI 60: Before Column Stand. Dev. Adjustment

NCI 60: Before and After Column S.D. Adjustment

NCI 60: Before and After Col. S.D. Adj., Rescaled

NCI 60: After Column Stand. Dev. adjustment

NCI 60: Fully Adjusted Data

NCI 60: Fully Adjusted Data, Platform Colored

NCI 60: Fully Adjusted Data, Melanoma Cluster

NCI 60: Fully Adjusted Data, Leukemia Cluster

NCI 60 Adj: More Views

Internet Available:

http://genome.med.unc.edu:8080/caBIG/DWDindex.htm

Follow Link:

DWD Cross-Platform Adjustment of the NCI-60 Data

NCI 60 Controversy

- Can NCI 60 Data be normalized?
- Negative Indication: Kou, et al (2002) Bioinformatics, 18, 405-412.
 - Based on Gene by Gene Correlations

Resolution:

Gene by Gene data view vs.

Multivariate Data view

Resolution of Paradox: Toy Data, Gene View

Resolution: Correlations suggest "no chance"

Resolution: Toy Data, PCA View

Resolution: DWD Adjusted

Resolution: DWD Adjusted, Gene view

Resolution: Correlations & PC1 Projection Correl'n

Needed final verification of Cross-platform Normal'n

- Is statistical power actually improved?
- A preliminary suggestion:
 - From C. Perou and J. Parker
 - DWD combined data across platforms
 - Split data into biological sub-classes
 - Got improved CV prediction of 5 year outcome
 - Suggests importance of "differing cancer types"

Careful about limitations

- Important Requirements:
 - All biological subtypes represented in all groups
 - Common gene sets
 - No missings
- Current state of the method:
 - No common samples
- Interested in prioritizing work on these?

Become an adopter!

Return to Key Philosophical Point

- Competing Paradigms:
 - Visually: what do we look at?
 - Conceptually: how do we think?

Gene by Gene vs.

Multivariate "point cloud"

Have illustrated power of multivariate concept

Website: Details & More Views

DWD caBIG Web Page:

http://genome.med.unc.edu:8080/caBIG/DWDindex.htm

- Many more "steps"
- Also Clustered Tree View Heat Map Views